In this ecological study, you will find out what native animals and habitats are found in your area, and make a digital story about them.

Name: ___
Section 1

Finding out about the study area

We have a greater diversity of living things in our backyards in Australia than most temperate climate countries. What’s your area like? In this activity you will collect data about the animals and plants in your study area and use this to evaluate its biodiversity. Scientists value high biodiversity because it means an area has a variety of species of plants and animals, and the ecosystem of which they are a part is sustainable.

Habitats in the study area

The places where animals and plants live are called habitats and they are a part of ecosystems. Sometimes animals and plants have specific habitats and requirements, and sometimes they can live in a variety of places. For example, echidnas live in many parts of Australia, whereas the cassowary does not.

Scientists who study the environment name habitats. The naming system they use is based on the dominant plant species, usually tall trees, and the amount of space between them (estimated using canopy or leaf cover). This standard naming system means the habitat name can be understood and used by others. The type of habitat is also a sign of the food and shelter available for animals.

Details of the naming system for habitats are available at: How to name habitats <http://www.qm.qld.gov.au/microsites/mangrove/resources.asp>

In many backyards or schoolyards, the natural habitat has been dramatically changed by garden plantings of tall trees and resembles open woodland, the habitat of behaviourally aggressive birds. These disturbed habitats have fewer vegetation layers, especially shrubs, which provide protection and food for smaller native birds. By doing the activities presented, you will understand more about how people have changed local habitats, and about ways of increasing biodiversity in urban environments.

Use the following focus questions to guide your activities:

What characteristics of the habitat affect the survival of plants and animals?

How much has the habitat changed from its natural state?

Can you see any undisturbed habitat in your study area?

What are the signs of animal activity in your study area?

What are the food sources available for animals?

Make a hypothesis: a statement about a relationship you think exists in the study area, which can be tested.

Are there parts of the study area that are very disturbed? They could act as a good comparison with other parts of the habitat.

If they are working with another school, then students could compare the study area with another school before writing their research question.

What part of the study area will have greater biodiversity?

What evidence do they need to support their hypothesis? To reject their hypothesis?
Group activity 1 **

Naming the habitat

Aim: To name the habitat(s) of your study site.

You can refer to the *Australian Natural Resources Atlas* (Australian Native Vegetation Assessment) for information and maps which show the original habitat of your study area, available at: http://www.anra.gov.au/topics/vegetation/images/veg_type/a4-pre.pdf

Work in groups

Equipment:
- 30 cm ruler
- 1 m² quadrat, made with plastic irrigation pipes or similar
- Transect line or tape measure
- Tent peg, to measure soil compaction

Method:

1. Choose an area that contains some native trees. Refer to *How to name habitats* for information about how to complete the table that follows.
2. Sample the vegetation along a transect line if the area is large. Collect and record data every 5 m.
3. Measure ground cover in a 1 m × 1 m quadrat. Either use your transect line to sample the area in several places or study a typical part of the area.
4. Complete the table which follows. Name the habitat.

Note: Habitats cannot be named accurately in disturbed areas.

5. Try to compare this area with a more or less disturbed part of the habitat, and form a research question about the comparative biodiversity expected in the two areas. Take photographs of the areas as a record.

Typical Brisbane schoolyard: modified open woodland habitat.
Habitat identification data

Use this table to repeat data collection across a transect line, or collate class data to make more detailed observations of your study area. Take some photos of your study area, of disturbed and less disturbed parts, using a digital camera.

<table>
<thead>
<tr>
<th>Vegetation</th>
<th>Height (m)</th>
<th>Count of plant types</th>
<th>Percentage cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td>Canopy or over storey >2–3 m</td>
<td></td>
<td>Canopy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 70%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 70%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 30%</td>
</tr>
<tr>
<td>Understorey <2 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrubs</td>
<td>Many-stemmed woody plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground cover, including grasses</td>
<td>Herbs, non-woody plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf litter</td>
<td>Depth (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil compaction using tent peg (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animals observed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If using a transect line, copy this table.

Name of habitat: __

My habitat photo
Group activity 2

What’s my habitat like?

Other animals or plants and non-living factors are regarded as part of an organism’s habitat, and affect their survival. Non-living, or physical, factors can be measured easily, such as the temperature of the soil and air, the humidity, light, wind speed and soil type. In other activities that follow you will also collect and observe some of the living things in your study area.

Take a photograph of a typical, and a more disturbed, part of the habitat.

Aim: To measure some important physical factors of the habitat and infer how they affect the survival of living things.

Equipment:
- Thermometer
- Tent peg
- Water
- Gloves
- Anometer (to measure wind speed)
- Hygrometer (to measure relative humidity)

1. Soil
 Soil temperature
 1. Choose a typical part of your study area; for example, if it is mostly shaded, choose a place in the shade.
 2. Place the bulb of the thermometer in the soil. Make a pilot hole first with a tent peg, if you are using a glass thermometer.
 3. Leave for one or two minutes until the temperature reading stabilises. Record the temperature.

2. Air
 Relative humidity
 Use the hygrometer, according to the instructions provided. Record your result.

 Wind speed
 Use the anometer, according to the instructions provided. Record your result.

 Air temperature
 1. Hold the thermometer in the air where you are observing and trapping animals.
 2. Wait a minute or so for the temperature to stabilise. Record your result.

 Coastal paperbark swamp, Bribie Island. Photo: B. Cowell, QM.
Group activity sheet 2

What’s my habitat like?

Group name: __

Location: __

Date: ___

Weather: __

Habitat photo gallery

<table>
<thead>
<tr>
<th>My habitat</th>
<th>Disturbed part of my habitat</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Physical factor</th>
<th>Value</th>
<th>Class range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil type</td>
<td></td>
<td>List types</td>
</tr>
</tbody>
</table>

Have you recorded the units of measurement for those factors that are measured? Can your data can be read and understood by others?

Submit this data to your Group Leader (or teacher) for uploading into the Abiotic Factor spreadsheet in the Data Collation Tool.
Analysis questions:
1. Write a description of your study area’s habitat using its physical factors.
__
__
__
__

2. Do its physical factors vary from site to site within the study area?
__
__
__
__
__
__
__

3. Provide an explanation for these differences if you can. Discuss your reasons with others in your group.
__
__
__
__
__
__

4. Are these physical factors affected by the living things in the habitat? Explain fully.
__
__
__
__
__

Habitat profiles

The vegetation layers in a habitat can show human impact on your study area. They are represented in a profile diagram. *Use a pencil* to draw your diagram, and show the relative heights of plants. Draw only their outline, not all the detail.

Label each type of plant in your profile as grass, herb, shrub, tree, and understorey or overstorey, see the rainforest profile. For more information about plant types refer to *How to name habitats*, available at: <http://www.qm.qld.gov.au/microsites/mangrove/resources.asp>

Profile diagram:
Analysis questions:

1. Has your local habitat been completely changed from its natural state?

__
__
__
__
__
__

2. Loose soil is important to the survival of burrowing native mammals and skinks. Was the soil in your study area firm and compacted, or suitable for these animals? Are there any other signs of native mammal activity in your study area?

__
__
__
__
__
__

3. List all the animals you saw in your study area. What are their requirements? You could put this data into a table.

__
__
__
__
__
__
What animals could live in this habitat?

You can identify food sources available for animals in your study area, and predict what animals you might find there. The consumers listed in the table live in disturbed and more natural areas, close to urban development.

Use the table as a checklist to identify any food available for animals in your study area. Also, tick ✔️ food sources you observe in your study area.

<table>
<thead>
<tr>
<th>Consumers</th>
<th>Insects</th>
<th>Reptiles</th>
<th>Birds</th>
<th>Mammals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food source</td>
<td>Insects</td>
<td>Reptiles</td>
<td>Birds</td>
<td>Mammals</td>
</tr>
<tr>
<td>Plant sap</td>
<td>Sucking insects e.g. aphids, bugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves</td>
<td>Stick insects Grasshoppers Caterpillars</td>
<td></td>
<td></td>
<td>Possums</td>
</tr>
<tr>
<td>Flower (nectar)</td>
<td>Butterflies Moths</td>
<td></td>
<td>Honeyeaters Lorikeets</td>
<td>Gliders Flying-foxes</td>
</tr>
<tr>
<td>Fruit (e.g. Syzygium berries, Moreton Bay figs)</td>
<td></td>
<td>Honeypeaters Figbirds Channel-billed Cuckoos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowers</td>
<td></td>
<td></td>
<td></td>
<td>Possums Native rats</td>
</tr>
<tr>
<td>Tree seeds (Acacia, Grevillea)</td>
<td>Beetle larvae Moth larvae Ants</td>
<td></td>
<td>King Parrot Rosellas Cockatoos</td>
<td></td>
</tr>
<tr>
<td>Grass seeds</td>
<td></td>
<td></td>
<td>Galahs Sulfur-crested Cockatoos Peaceful Doves Black Ducks Finches</td>
<td></td>
</tr>
<tr>
<td>Nuts (e.g. Macadamia)</td>
<td></td>
<td></td>
<td></td>
<td>Native rats</td>
</tr>
<tr>
<td>Logs, leaf litter</td>
<td>Termites Beetle larvae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insects</td>
<td>Other insects Spiders</td>
<td>Lizards</td>
<td>Honeyeaters</td>
<td></td>
</tr>
</tbody>
</table>
Finding the habitat’s consumers

Insects are the largest group of animals on the planet and important consumers in all land ecosystems. Consumers are those organisms that feed on other living things, including plants.

In this activity you will use some methods scientists use to catch and identify invertebrates in large trees in your study area. Large trees are often a source of food for immature and adult insects, so are a good place to search for them. Invertebrates live on leaves, under bark, on the ground and in leaf litter. If there are no large trees in the area, use the largest plants available, shrubs or even grasses, and modify the methods used.

Although spiders are predators of insects, because they are often nocturnal, they are not likely to be trapped and observed during the day.

Use the following focus questions to guide student activities:

What are important microhabitats where animals live in the habitats?

What types of invertebrates would you expect to trap in the leaves, under bark, in leaf litter and on the ground?

What food do insects typically consume? Draw a simple food chain showing a feeding relationship you identified.

Are there suitable places in your habitat for vertebrates such as reptiles and birds to live?

What birds did you observe during field work? Were they behaviourally aggressive?

How reliable are your results?

What are some of your sources of error?

Note: Student activities marked ** are intended for Middle School.

Note: Flora and fauna reserves, state forests and national parks are protected areas, so insect collection is banned in these areas.

Preserving insects

Many insects do not need to be killed and preserved for identification purposes. They will survive in specimen jars for several days and then can be returned to their habitat. However, they are easier to identify, examine and photograph once they have been killed. To do so, place the specimen in a jar and cover with methylated spirit. Remember, a labelled preserved specimen is a voucher to check identifications later.

Beetle having a meal, and chewed leaves (left). Photo: Australian Insect Farm.
Aim: In this activity you will trap and identify invertebrates where they live in the habitat, in and around the plants. Work in groups to collect and identify invertebrates.

Collecting in the leaves

1. **Beating**

 Beating enables you to collect invertebrates from the tree foliage. As you beat the foliage with a stick, invertebrates drop from the tree as a response to avoid predation. Immature insects can also be caught by beating, while other insects fly away.

Equipment (per group):
- A piece of solid dowel (a broom handle is good)
- Large sheet of white paper, beating trays or a sheet of calico
- Specimen jars
- Methylated spirit (optional)
- Paper and pencil for labels
- Hand lenses

Method:
1. Place your sheet on the ground under the branch used to sample invertebrates.
2. Beat the branch and its foliage using the dowel.
3. Collect invertebrates from the sheet and place them in jars. Add methylated spirit to cover. Label in pencil with the date, collector's name, type of tree and location and place in the jar. Put all this information into your data table.
4. Use the Insect Identifier provided.
5. Record common names of your specimens; for example, true bug, ant, snail or caterpillar in the data table, and write this information on another label. Either, place this in the jar with the specimen, or identify further using the interactive key (see step 7).
6. Observe and identify their mouthparts using a hand lens. Record this information in the data table.
7. **Use the interactive key, The Key to Invertebrates, to identify any insects you find to their order. It is available at: http://www.ento.csiro.au/education/key/couplet_01.html. Ask your teacher for help with this key. Add this information to your data table.

Labelling specimens

Scientists put labels inside the jar with the specimens. They do this to ensure labels cannot be rubbed off accidentally. They use two labels. On one they record the date, collector's name, and location and habitat details. On the other they record the common name and identification, and this is written later. Scientists write labels on small strips of paper in special inks that do not run, but also use HB pencils.

Either use the Insect Identifier provided to identify insects using their common name or identify the order to which the insect belongs using the interactive Key to Invertebrates, available at: http://www.ento.csiro.au/education/key/couplet_01.html
2. Netting
You can use a butterfly or sweep net to sample insects from foliage that fly away when disturbed.

Equipment:
- Butterfly or sweep net
- Specimen jars
- Methylated spirit (optional)
- Labels
- Pencil

Method:
1. Make wide sweeps with your net across tree foliage.
2. Remove the invertebrates and place in specimen jars. Preserve by covering with methylated spirit. Label with the date, collector’s name, type of tree and location.
3. Use the Insect Identifier to identify the trapped invertebrates. Record their common names on a label in pencil, as well as in the data table.
5. Record their identification in the data table and on a label.

Collecting on the ground
You can use pitfall traps to catch ground-active, often burrowing, invertebrates. Traps are usually placed about 5 m apart along a transect line, and left overnight, or for several days.

Equipment (for each trap):
For pitfall trap:
- 1 or 2 L ice cream container with lid with large central hole cut (see images below)
- Trowel
- A piece of perspex roofing or chicken wire cut to size to cover the trap, refer to the Terrestrial Invertebrate Status Review
- Water with a little detergent (makes trapped insects sink)
- Specimen jars
- Sieve

Method:
See the Biodiversity Assessment Guide to make pitfall traps (14–15).
1. Use a trowel to dig a hole large enough for the container. Place the ice cream container ‘trap’ in position. Add the water and place the roof over the trap.
2. Leave the trap overnight.
3. Pour off the water carefully, so you do not lose specimens. You could use a sieve.
4. Place your specimens into jars. Cover with methylated spirit, and label.
5. Identify your invertebrates using the *Insect Identifier*.

6. Record their common names; for example, true bug, ant, snail or caterpillar, in your data table, as well as on labels in the specimen jars.

7. Use a hand lens to observe, identify and record the mouthparts.

Collecting under the bark

Loose bark can make a very good habitat for some invertebrates. At certain times of the year some gums shed their bark, so invertebrates are easier to trap. Just peel back the bark. What do you see? Record the common names of invertebrates and other collection data in your data table, as before.

Avoid hairy larvae and woolly pupal cases of insects; they can be very painful if touched.

Do not touch millipedes, spiders or centipedes: they can bite.

Left: a millipede. J. Wright, QM.

Right: a centipede. B. Cowell, QM.

Collecting in the leaf litter

Scavengers and decomposers live in leaf litter, and break down leaf litter and other plant matter, dead animals and wastes in the soil. They are vital to the nutrient cycles of all land ecosystems.

Some people use a Berlese-Tullgren funnel to trap soil organisms, but this simple method works very well.

Equipment:
- Garden rake
- Specimen jars, labels etc.
- Methylated spirit
- White sheets of paper, a white tote box or a beating cloth made from calico
- Several pairs of gloves

Method:
1. Rake up some leaves — enough to fill a white tote box.
2. Wearing gloves, place the leaves in the box, on the sheet or on the beating cloth.
3. Leave in the sun for 30 minutes.
4. Shake. Your insects will move down onto the sheet or bottom of the tote box. Remove leaves. Wear gloves and use a specimen jar to catch any invertebrates.
5. Preserve specimens in the jar and label, as before.
7. Record this information in your data table and on labels in the specimen jars.
8. Complete Group Activity Sheet 3 before uploading the data into the Specimen Data spreadsheet for your group in the Data Collation Tool.
Invertebrate collection results

<table>
<thead>
<tr>
<th>Collection method</th>
<th>Sample information</th>
<th>Common name</th>
<th>Order**</th>
<th>Mouthparts</th>
<th>Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beating</td>
<td>23 Oct 07, A. Collector, gum tree near Year 7 class Albany Hills State School</td>
<td>Butterfly</td>
<td>Lepidoptera</td>
<td>Long coiled tube</td>
<td>Liquid sugar (nectar)</td>
</tr>
</tbody>
</table>

Take photos of any interesting or common invertebrates you find. They tell you a lot about your study site.

Look at your invertebrate collection data. Write three things you now know about your study site from this data:

1. __
2. __
3. __
Analysis questions:
1. What types of insects are more common than others? List them below.
__
__
__
__
__
__
__
__
__
__
__
__

2. Do the types you trapped vary between microhabitats on the tree? Make a list of common insects and those that are less common. Try to find out more about the way they live. Their role in an ecosystem is called a niche.
__
__
__
__
__
__
__
__
__
__
__
__

3. Look at the mouthparts of your invertebrates. They show the type of food eaten; for example, insects with sucking mouthparts feed on sap, or even blood, and spiders have fangs. List the insects that are definitely herbivores.
__
__
__
__
__
__
__
__
__
__
__
__
__
__

**means a more advanced activity
4. Which ones are you not sure about? Justify your choice. Were the insects you caught mainly herbivorous or carnivorous? Why do you think there was more of one than the other?

__
__
__
__
__

5. Have you caught any immature insects? How do you know? Were they more common in one microhabitat than another?

__
__
__
__
__

6. **Make a generalisation about the roles of invertebrates in your study area. Do the insects fill all the roles they could in the habitat you studied? In what niches were they relatively uncommon?

__
__
__
__
__

7. **Can you account for differences seen in your study site, compared to other areas studied by other students?

__
__
__
__
__

Something to think about …
Scientists do not think flying insects caught on a tree necessarily feed on its foliage. What signs would you look for to determine if insects were living and feeding in trees?
Other consumers: reptiles

Some reptiles can survive well in disturbed habitats. Reptiles are often shy, but they become more active in spring and summer, and can be seen by a careful observer. You will need to be very quiet to observe them. They can be found along path edges and in well-lit places in the warmer months. In disturbed areas other factors can affect their diversity, such as rocks and food availability, so if you notice any factors that seem to affect their numbers, record them.

Reptiles feed on insects or both insects and plants. They hide from predators under logs and rocks or they sit up high on rocks or fences to bask in the sun.

Reptile diversity

If you watch skinks closely, you might observe their territorial and other behaviours. You could also hear the chuck-chuck-chuck of Asian House Geckos, which are active during the day. In some areas, Bearded Dragons (sometimes incorrectly called Frillneck Lizards) and Water Dragons are quite common.

Lounge lizards?

A lizard lying on a fence post in the sun is a common sight in Australian backyards. They are called skinks, and are Australia’s largest and most diverse reptile group. Some live in loose soil or humus and have no legs; others bear live young. Smaller skinks eat insects, while large skinks are often omnivores.

Other consumers: birds

The Australian bird list stands at nearly 800 species, and some of these you can see in your schoolyards or backyards. Sometimes, birds are only temporary visitors to your schoolyard habitats. For example, some migrate from mountains to lowlands and, sometimes, to other parts of the world in search of food.

Equipment:

- Binoculars
- Data record sheet
- Pencil
- Hat
- Field guide

Bird watching should be done in the early morning or late afternoon when birds are active. You could survey birds at different times of the year, to see if they always live in the habitat or whether they migrate to other habitats. In North Queensland you may see a much greater variety of birds than shown in the table.
Bird watch data

<table>
<thead>
<tr>
<th>Bird observed</th>
<th>Characteristics</th>
<th>Habitat characteristics</th>
<th>Beak types/diet</th>
<th>Observed behaviour</th>
</tr>
</thead>
</table>

Behaviourally aggressive birds (attack other birds, and sometimes people)

<table>
<thead>
<tr>
<th>Bird observed</th>
<th>Characteristics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Magpies</td>
<td>Black and white bird with red eye. Greyish-white beak with dark tip. 45 cm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butcherbirds</td>
<td>Grey, black and white bird. Grey beak with black tip. 30 cm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currawongs</td>
<td>Large black bird with yellow eye and white rump. 50 cm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noisy Miners</td>
<td>Grey bird, with white forehead and black face. Yellow patch near eye. Short curved yellow beak. 25 cm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainbow Lorikeets</td>
<td>Green, with bright blue head, yellow-green collar. Small, long tail. 30 cm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crows</td>
<td>All black bird. Long tail. 50 cm. ark-ark-ark call.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian Mynas (introduced)</td>
<td>Dark brown bird with yellow beak. Yellow patch around eye. 25 cm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peewees</td>
<td>Black and white bird with short yellow beak. Finely built. 30 cm.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other birds

<table>
<thead>
<tr>
<th>Bird observed</th>
<th>Characteristics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Willy Wagtails</td>
<td>Lively black bird with white belly. Long fanned tail. 20 cm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finches</td>
<td>Brown or grey. Small.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figbirds</td>
<td>Dull brown with streaked underside (female); mainly greenish back with grey underside and black head with red eye (male).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairy-Wrens</td>
<td>Brown with blue tail (female); black and red or blue, with chestnut wings (male). Long tail. Round body. 15 cm.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Group activity sheet 5

Other consumers

Analysis questions:

1. Does your study area contain potential reptile habitats? Describe them.

__

__

__

2. Make a list of any reptiles you observe, and their possible requirements, based on your observations.

__

__

__

3. Make a list of the common birds you observed. What food do they eat? Where did they live? This data could be represented in a table.

__

__

__

4. What types of birds are missing from your list? Provide an explanation for their absence from your study area. Think carefully, there could be a few reasons.

__

__

__

Magpies

What causes magpies to dive bomb and attack people at certain times of the year? Many magpies live in organised social groups of up to 10 birds, and they can display very aggressive behaviour during their breeding season in spring. Male birds actively defend territories and sometimes attack people selectively: that’s why Australia Post has funded research on magpie behaviour. Magpie nests are often located 30–50 m from the territory boundary they defend. Away from urban environments magpies live in open woodland habitats so are well adapted to our backyards. *In what way are these environments similar?*

Group activity sheet 6

Trophic levels and pyramid of numbers

Scientists can tell a lot about the health of an ecosystem from the types of animals and plants they observe. Often, they use specific species called bio-indicators to make this assessment. For example, the presence of certain frogs, reptiles or even insects, can show that a study area has reasonable biodiversity. You can make an assessment of your study area ecosystem using the trophic (or feeding) levels of invertebrates.

A pyramid of numbers is one way to compare the numbers of organisms at different trophic levels in your study area. Plants make up level one. Herbivorous insects make up level two, with other herbivores, and so on.

Research:
Either ask your teacher or consult a reference book to find out the meaning of trophic levels. In healthy ecosystems there can be up to five trophic levels.

Analysis questions:

1. Draw a pyramid of numbers using your group or class data. What assumptions did you make to draw a pyramid?

 Assumptions:

 __
 __

2. Disturbed ecosystems have reduced biodiversity. Make an assessment of your study area’s biodiversity, using this pyramid of numbers. Is there any trophic level where few invertebrates are represented?

 __
 __

3. Are there any orders of insects missing from your study area? Any trophic levels having few animals? Try to account for the differences you find.

 __
 __

Insect plagues (many specimens of the same type) are a sign of an unhealthy ecosystem. What would cause insects to increase in number? List some causes of plagues.

 __
 __
Group activity 6 **

Physical factors of the study area

The physical, or non-living, factors of the study area affect the survival of plants, animals and microorganisms, while the activity of living things can also affect physical factors.

For example, dead plants and animals in a habitat increase the amount of organic matter in the soil, provided conditions are suitable for decay.

In this activity you can measure the physical factors of your study area including soil pH, texture, temperature, organic matter, wind speed, relative humidity and air temperature, and attempt to determine their effect on living things.

Ask your teacher what tests you will conduct. Draw up an appropriate data table (include units).

Equipment:
- Thermometer
- Distilled water
- Universal indicator solution
- Barium sulfate powder
- Hydrogen peroxide solution
- Tiles, spotting tiles
- Stirring rod or skewer
- Test tubes
- Gloves
- Anometer (to measure wind speed)
- Hygrometer (to measure relative humidity)

1. **Soil**
 1. **Temperature**
 1. Choose a representative part of the study area; for example, if it is mostly shaded, choose a place in the shade. Direct sunlight can affect the soil temperature.
 2. Place the bulb of the thermometer in the soil. Make a pilot hole first if you are using a glass thermometer.
 3. Leave for one or two minutes until the temperature reading does not change. Record the temperature.

 Take a soil sample from your study area, and then conduct the following tests:
 - **Soil type**
 1. Use the key to determine texture.
 2. If your soil sample is too dry, add a little water.
 - **pH**
 1. The conventional test using universal indicator solution can be difficult to read. Read the overview Finding soil type, which includes a simple explanation of soil pH, available at: <http://www.qm.qld.gov.au/microsites/mangrove/resources.asp>. **Wear gloves when conducting this test.**
 2. On a white tile, put a teaspoon of soil and leaf litter or humus.
 3. Cover with barium sulfate powder and mix with a stirring rod or skewer, keeping the pile fairly compact.
 4. Cover with universal indicator solution until the sample is moist.
 5. Match its colour with the chart. Record soil pH.

2. **Air**
 - **Relative humidity**
 1. Use the hygrometer, according to the instructions provided.
 - **Wind speed**
 1. Use the anometer, according to the instructions provided.
 - **Air temperature**
 1. Hold the thermometer in the air in the study area.
 2. Wait a minute or so until the temperature stabilises.

Results:
Record your data in your prepared data table.
Physical factors of the study area

Attach your data table to this sheet

Analysis questions:

1. Write an overview of the physical factors you found in your study area. Usually, you would try to estimate if the levels are high or low, such as if the daytime temperatures were hot. Are there any factors that seem too high or too low? List these. What effect would they have on the organisms living there?

__
__
__
__
__
__

2. Comment on how we change habitats, and if that makes animal survival more difficult. Do any living things benefit from human impact on habitats?

__
__
__
__
__
__

3. Compare your study site to other groups. What factors were consistent and what factors varied across sites? What conclusions can you draw about the similarities and differences?

__
__
__
__
__

** Communicate your results: write a report about your results OR make a documentary about the biodiversity of your schoolyard, backyard or study area.**
Key for Soil Type Identification

Before finding texture, make sure the soil is moist, but not wet. It must be able to be moulded.

Is the soil gritty? (rub between fingers)

Yes

- Is the soil sticky?
 - No
 - Will it make a firm ball?
 - Yes
 - Soil type: Sandy loam
 - No
 - Soil type: Loam
 - No
 - Is the soil silky? Will it polish when rubbed in the fingers?
 - Yes
 - Soil type: Silky loam
 - No
 - Soil type: Loam

No

- Is the soil hard to squeeze out of shape?
 - No
 - Is the soil silky? Will it polish when rubbed in the fingers?
 - Yes
 - Soil type: Loam
 - No
 - Soil type: Sandy loam
 - Yes
 - Soil type: Clay loam

Fine Texture Coarse Texture
Insect Identifier

Have you found an unusual insect? Use *The Key to Invertebrates* to identify it accurately.

<table>
<thead>
<tr>
<th>Bee or wasp</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Adult winged</td>
<td></td>
</tr>
<tr>
<td>• Two pairs of wings often hooked together; membranous (transparent)</td>
<td></td>
</tr>
<tr>
<td>• Narrow waist (start to abdomen)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ant</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Adult wingless (usually)</td>
<td></td>
</tr>
<tr>
<td>• Narrow waist; long bent antennae</td>
<td></td>
</tr>
<tr>
<td>• Live in complex nests</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fly or mosquito</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• One pair of forewings; hind wings reduced to knobs; membranous (transparent)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Butterfly or moth</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Two pairs of wings; covered in scales</td>
<td></td>
</tr>
<tr>
<td>• Coiled mouthparts</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cockroach</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Flat body top to bottom</td>
<td></td>
</tr>
<tr>
<td>• Two pairs of wings (adults may have no wings)</td>
<td></td>
</tr>
<tr>
<td>• Forewings partly hardened; hind wings not</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beetle</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Forewings form hard cover over hind wings</td>
<td></td>
</tr>
<tr>
<td>• Two pairs of wings</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bug</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Two pairs of wings</td>
<td></td>
</tr>
<tr>
<td>• Forewings partly hardened</td>
<td></td>
</tr>
<tr>
<td>• Tube mouthpart (for sucking)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grasshopper or cricket</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Two pairs of wings</td>
<td></td>
</tr>
<tr>
<td>• Forewings partly hardened</td>
<td></td>
</tr>
<tr>
<td>• Enlarged hind legs for jumping</td>
<td></td>
</tr>
</tbody>
</table>

"insects not shown to size"
Section 2

Tell a digital story about your backyard

What’s your backyard like? One way to tell people about the biodiversity of your study area is to make a digital story. They are micro-documentaries, personal stories which inform, convince, provoke, question and can even be funny.

A digital story contains photos, text and text slides and a voice-over telling the story. Digital story software is used to place the photos in sequence, then to add motion, transitions and text, and record voice-over using a computer microphone.

In this activity you will make a digital story about the wildlife of your schoolyard or study area. You can use a simple software package Microsoft Photo Story, which is free to download at:

Microsoft Photo Story 3 Download Page
<http://www.microsoft.com/photostory>

Useful website tutorials about Photo Story
Create your first photo story at:
<http://www.microsoft.com/windowsxp/using/digitalphotography/photostory/tips/firststory.mspx#ERD>

Making photo stories at:

This tutorial is aimed at Early Phase teachers, but it demonstrates Photo Story features, and is easy for beginners to follow.

Look at other people’s stories of the wildlife in their backyards, in Wild Backyards, available at:

Above: Beating for insects at the Australian Insect Farm, Innisfail.
Five steps to making your own science digital story

Work in small groups of two or three people. Any digital story should be no more than 1½ – 2 minutes in length, so its file size is not too big. Your story should be good enough to show to the rest of your class, or to the general public.

1. Observe and record data from your field study of your schoolyard or study area.

In your story you could give advice on how to make your schoolyard a better habitat for native animals, using your data.

- Photograph and identify interesting animals or plants you have studied over some weeks. Take a number of photos.
- Select from 8 to 16 of these photos to make your story. Try to show the context of any animal you have photographed by taking a photo of its habitat.
- Save these photos.

2. Make a storyboard

Storyboards are plans of digital stories. They allow you to think about the titles and narrative of your slides and transitions in your story, to make it more cohesive and save time.

- Select the photos you want to use. You could create a proof sheet of them using the Picture toolbar in Word (Click on insert picture icon).

3. Create an interesting story

Good digital stories are personal, and should be based on your experience and interests. What was interesting about your field work, your study area or the animals you saw?

4. Finish it off

- Open Photo Story. Choose new story, and import photos from your folder in the sequence you want. Drag and drop
them into order, edit and add effects using the next and back buttons.

- Write the script of your voice-over (no more than 300 words).
- Record your voice-over using a computer microphone.
- Plan your transitions between slides to be punctuation marks for your voice-over.

5. Be a critic
Show your digital story to a select audience. What works, what doesn’t? Write a short critique of your digital story based on the audience response.

Other hints
1. Make a text graphic
You can add titles to your pictures in Photo Story, but you may also want to write more text to explain some of the scientific elements of your story’s pictures. Photo Story will import text as a graphic or picture file (JPG), after it has been created in PowerPoint.

- Open PowerPoint. Choose a slide layout that allows you to write text. Change the font size to suit the amount of text you are writing, and be economical with the words you use.
- Change text colour or use textboxes to add photos or diagrams.
- To save the text graphic: File > Save as > File type (JPEG) > Write file name <Enter> Choose Current slide only.

This file is now ready to import into your digital story.

2. How to name animals
Add the common name or scientific name to the titles of your pictures. Check correct names in guides and handbooks such as *Wildlife of Greater Brisbane* (Queensland Museum).

Conventions apply when naming plants and animals.
- **Common names**: For a recognised common name and these vary, the first letter of each name is capitalised.
- **Scientific names**: Scientific names are species names, so they are precise. They consist of two names, both written in italics. A capital is used for the first letter of the first name (genus name), with all lower case letters for the second name (descriptive name). This is the internationally-recognised Linnaean system, for example:

Common name: Blue-tongued Skink

Scientific name: *Tiliqua scincoides*

Blue-tongued Skink (*Tiliqua scincoides*) basking in the Roma sun.

Photo: C. Eddie.

What makes a good story?
- Live your own story; tell it in first person.
- Show a lesson you learned about your study area.
- Develop creative tension in a story, by using motion wisely; for example, motion across a beetle says much about the beauty of our backyards.
- Show, don’t tell.
- Don’t use too much narrative.
- Polish your digital story so its photos, transitions and voice-over produce the meaning you want.
Tips on how to take great wildlife photos

Queensland Museum photographer Jeff Wright gives you some tips on how to improve your photos of wildlife and landscapes.

Light

Strong sunlight casts hard shadows, which may or may not be a feature you want in your photograph. So, either move the object into the shade or photograph it at a different time of day.

It is usually a good idea to switch off your camera’s flash because it is often hard and direct.

To avoid ‘camera shake’, hold your camera still, preferably using a tripod.

Use a reflector if one side of a subject appears a little dark. They can be made from everyday materials of any shape and size, such as white polystyrene foam, white card or card covered with aluminium foil.

Landscapes

Take pictures of landscapes early or late in the day. You need to take some time to see how the landscape looks at those times before you take a photo.

Composition

Two main things affect the way a subject in a photo looks: framing and camera angle. For example, if photographers want to show cities as bustling, crowded places, they would frame a street scene rather than a single person in the street.

Framing

A frame is what you see in the camera’s viewfinder or on its screen. You can place the subject in different places in the frame if you move it to the side or centre of the frame when you take the photo. You can also change your subject’s size in the frame if you move in closer, step back a little or use the camera’s zoom.

Camera angle

Most people take photographs from eye height, so to vary the camera angle, get down lower or look at your subject from above.

Take lots of photos

Study your photos to see which compositions, lighting and camera settings worked best.

Be organised

Check your camera batteries are fully charged and there is plenty of space on the memory card. You might also need water, hat, sunscreen, raincoat and a plastic bag or case to keep your camera clean and dry.

Final tips

Reduce background clutter to make your compositions strong and simple.

Keep the eyes of animals and wildlife in focus.

Banksia aemula photographed by Jeff Wright.